A Halloween Story

Hey, everyone! Since today is Halloween, I decided to write a Halloween story. This story is about a fairy and her princess preparing for Halloween. Hope you enjoy!

Once upon a Halloween, there lived a fairy and her princess who enjoy Halloween every year. One Halloween, the fairy asked, “Are you going as a fairy? If you are, I could give you some hints. I am going as a princess. I want some hints from you, please.”

“Yes, I’m dressing up as a fairy. I need some fairy tips from you, please. Wow, I could give you princess tips and hints”, said the princess. The princess and the fairy are going to a Halloween party and they are going as a fairy and princess. They give professional tips and hints every year to each other.

“You did a magnificent job. The makeup is fantastic. Does my makeup look ok?”, said the princess. “Yes, you did a splendid job. Thank you.” Once they were at the Halloween costume party, they had fun and got plenty of candy from trick treating.

When they got home, they were so tired that they collapsed into bed after they took off their costumes.  They had scary, fun, and silly Halloween dreams. Happy Halloween, everyone 🎃!

Image result for happy halloween

Happy Halloween!

Learn About Christmas


Tweet Hello, everyone! You might want to know more about Christmas. Thank you for visiting my blog! Christmas is my favorite holiday. In Argentina, the weather is almost always warm at Christmas. Preparations for Christmas begin very early in December … Continue reading

Emotions With Animals: Angry Ducks

Hey there, everyone! Welcome back to Emotions With Animals. This week’s emotion is Anger. I also have recently wrote A Sad Princess StoryEmotions WIth Animals: Sad CatsA Happy FairyHappy DogsA Mindful Mermaid Story, and Mindful Goslings if you haven’t seen these blog posts yet. Thank you for everyone who has visited these linked blog posts!

Angry ducks hiss and beat nearby ducks. Angry ducks can fight like people. Angry ducks are similar to people.

Angry people have meltdowns. Angry people have arguments. Angry people also hiss. Angry people beat other people and objects.

Here are some ways to stop anger:

Separate emotion and action: It’s easier to get rid of the anger when you separate those emotions and actions. You might feel a little better when you do this.

Do Some Exercises: This will cool yourself down when angry. It will also help your body stay healthy and strong.

Delay your Reaction: This will help you get centered again. Inhale deeply and as you exhale, count to ten or repeat a phrase that helps you relax several times.

Distract Yourself: Read a good book that will make you feel happy, watch a movie that will make you smile or feel good, and think of a good memory. You could also try painting, drawing, writing, and more!

Discuss Your Anger With Someone You Trust: This might make you feel better. It could be a family member, friend, or someone you play or work with. The person you talk to may have experienced it themselves.

Listen to Music: Listening to the music may help you feel better. Listen to aggressive music that matches your mood allows you to work through the emotion productively. Listen to slower music (such as acoustic or Hawaiian music) allows you to slow your thought process and calm down.

Write a E-Mail To Yourself: I know it might sound silly but it will help you feel a lot lighter once your done. Write out your anger and then continue to revise the e-mail as you think of new things you would’ve liked to say at the time.

Get everything out of your system about the issue on your own time, as the words come to you. Once you have nothing more to say and you’ve perfected the e-mail.  Go delete the email. Use erasing the e-mail as a symbolic gesture toward letting go of what’s bothering you.

Disconnect from Your Triggers

Watch a Funny Show/Movie: See the Distract Yourself to see info on this section.

Accept and Know: It’s okay to feel angry and be angry.

Focus: Where do you feel the anger in your body? How does it feel? Does it feel tight, painful, or tight.  Focus on all of that. Eventually, it should go away. Of course, if it’s your first few times it may not work for you because it takes practice.

Do something: Take few deep breaths, look at a flower, look at a tree, look at birds, or go for a walk.

Don’t say judgemental things About Anger: You’ll feel better after you have done this.

I hope you’ve enjoyed this blog post. See you next time at Emotions With Animals!

Cute Angry Duck. Doesn’t it look adorable?


Interesting Facts About Rocks

Hey there! I’m researching rocks because I’m curious about them. I also like rocks because they are so interesting. Enjoy!

Geologists define rocks as aggregate of minerals. Minerals are naturally occurring, not unhealthy substances with specific chemical compositions and structures. A rock can be filled of many crystals of one or more minerals, or combinations of many minerals. Several exceptions, such as coal and obsidian, are not composed of minerals but are thought to be rocks.

People often use rocks for include building materials, roofs, sculpture, jewelry, tombstones, chalk, coal for heat, and more. Oil and natural gas can also be found in rocks. Many metals like a fork are made from rocks known as ores. Even, prehistoric humans used rocks as early as 2,000,000 B.C. Flint and other hard rocks were very important raw materials for crafting arrowheads and other special natural made rocks.

Around 500,000 B.C., rock caves and structures made from stones had become important forms of shelter for early man. During that time, early men had learned to use fire, a development that allowed humans to cook food as needed to survive and greatly expand their geographical range. Eventually, most likely no sooner than 5000 B.C., humans had realized that minerals such as gold and copper could be from rocks. Tons of ancient monuments were crafted from stone, including the pyramids of Egypt, built from limestone about 2500 B.C., and the buildings of Chichen Itza in Mexico, also of limestone, built near A.D. 450.

Since the 1500s, scientists have studied minerals and mining, fundamental aspects of the study of rocks. Georg Bauer published Concerning Metallic Things in 1556. By 1785, the British geologist James Hutton published Theory of the Earth, in which he explained his observations of rocks in Great Britain and his conclusion that Earth is much older than previous scientists before him had guessed. Geologists are scientists who study the earth and rocks, distinguish three main groups of rocks: igneous rocks, sedimentary rocks, and metamorphic rocks.

These distinctions are made on the basis of the types of minerals in the rock, the shapes of individual mineral grains, and the overall texture of the rock, all of which indicate the environment, pressure, and temperature in which the rock was made. Igneous rocks form when magma is below the land of the Earth or lava at the land of the Earth hardens. The minerals in the rock will make crystals or grow together so that the separate crystals make 1 crystal altogether. Igneous rocks and magma make up much of the oceanic and continental crust, as well as most of the rock deeper in the Earth.

Igneous rocks can be identified by the interlocking appearance of the crystals in them. Typical igneous rocks do not have a layered texture, but exceptions exist. For example, in large bodies of igneous rock, relatively thick crystals that are made early can sink to the bottom of the magma, and less thick layers of crystals that are made later can accumulate on top. Igneous rocks can form deep within the Earth or at the surface of the Earth in volcanoes.

In general, igneous rocks that form deep within the Earth have large crystals that indicate a longer period of time during which the magma cools. Igneous rocks that form at or near the surface of the Earth, such as volcanic igneous rocks, cool quickly and contain smaller crystals that are difficult to see without magnification. Obsidian, also called volcanic glass, cools down so fast that no crystals are made. Nevertheless, obsidian is considered to be an igneous rock.

Igneous rocks are classified on the basis of how much minerals there are and the size of the crystals in the rock. Extrusive igneous rocks have small crystals and crystallize at or near the Earth’s surface. Intrusive igneous rocks cool slowly below the Earth’s surface and have larger crystals. Rocks made up of thick, dark-colored minerals like olivine, pyroxene, amphibole, and plagioclase are called mafic igneous rocks.

Light-colored, less thick minerals, including quartz, mica, and feldspar are called felsic igneous rocks. Common igneous rocks include the felsic igneous rocks granite and rhyolite, and the mafic igneous rocks gabbro and basalt. Granite is an intrusive igneous rock that includes large crystals of the minerals quartz, feldspar, mica, and amphibole that form deep within the Earth. Rhyolite includes the same minerals, but forms as extrusive igneous rock near the surface of the Earth or in volcanoes and cools quickly from magma or lava, so its crystals are difficult to observe with the naked eye.

Similarly, gabbro is more coarse-grained than basalt and made deeper down in the Earth, but both rocks include the minerals pyroxene, feldspar, and olivine. Fabulous exposures of igneous rocks occur in the volcanoes of Hawaii, volcanic rocks of Yellowstone National Park are located in Wyoming, Idaho, Montana, in Lassen Volcanic National Park and Yosemite National Park in California. Sedimentary rocks are those made of grains of preexisting rocks or organic material that, in most cases, have been eroded, deposited, compacted, and cemented together. They typically form at the surface of the Earth as sediment moves as a result of the action of wind, water, ice, gravity, or a combination of these.

Sedimentary rocks also form as chemicals precipitate from seawater, or through accumulation of organic material such as plant debris or animal shells. Common sedimentary rocks include shale, sandstone, limestone, and conglomerate. Sedimentary rocks typically have a layered appearance because most sediments are deposited in horizontal layers and are buried beneath later deposits of sediments over long periods of time. Sediments deposited rapidly, however, tend to be poorly layered if layers are visible at all.

Sedimentary rocks are made in many different environments at the surface of the Earth. Eolian, or wind blown, sediments can accumulate in deserts. Rivers carry sediments and deposit them along their banks or into lakes or oceans. Glaciers make unusual deposits of a wide variety of sediments that they pick up as the glacier expands and moves; glacial deposits are well exposed in the northern United States. Sediments can travel in currents below sea level to the deepest parts of the ocean floor.

Secretion of calcium carbonate shells by reef-building organisms produce large quantities of limestone. Evaporation of seawater has resulted in the formation of widespread layers of salt and gypsum. Swamps rich in plants can produce coal if organic material accumulates and is buried before aerobic bacteria can destroy the dead plants. Sedimentary rocks are classified on the basis of the sizes of the particles in the rock and the composition of the rock.

Clastic sedimentary rocks comprise fragments of preexisting rocks and minerals. Chemical precipitates are sedimentary rocks that are made by precipitation of minerals from seawater, salt lakes, or mineral-rich springs. Organic sedimentary rocks formed from organic matter or organic activity, such as coal and limestone made by reef-building organisms like coral. Grain sizes in sedimentary rocks range from fine clay and silt to sand to boulders.

The sediment in a sedimentary rock reflects its environment of deposition. For example, wind-blown sand grains commonly is evidence of abrasion of their surfaces as a result of colliding with other grains. Sediments transported long distances tend to decrease in size and are more rounded than sediment deposited near their precursor rocks because of wearing against other sediments or rocks. Large or heavy sediments tend to wear out of water or wind if the energy of the water or wind is insufficient to carry the sediments.

Sediments deposited rapidly as a result of slides or slumps tend to include a larger range of sediment sizes, from large boulders to pebbles to sand grains and flakes of clay. Such rocks are called conglomerate. Along beaches, the rhythmic activity of waves moving sediment back and forth produces sandstones in which the grains are well rounded and of similar size. Glaciers pick up and carry a wide variety of sediments and often scratch or scrape the rocks over which they travel.

Sedimentary rocks are the only rocks in which fossils can be preserved because at the elevated temperatures and pressures in which igneous and metamorphic rocks form, fossils and organic remnants are ruined. The presence of fossils and the types of fossil organisms in a rock provide clues about the environment and age of sedimentary rocks. For example, fossils of human beings are not present in rocks older than approximately two million years because humans did not exist before then. Similarly, dinosaur fossils do not occur in rocks younger than about 65 million years because dinosaurs became extinct at that very time.

Fish fossils in sedimentary rock indicate that the sediments that make up the rock were deposited in a lake, river, or marine environment. By establishing the environment of the fossils in a rock, scientists learn more about the conditions under which the rock formed.

Spectacular exposures of sedimentary rocks include the Grand Canyon which is in Arizona, the eolian sandstones of Zion National Park which is in Utah, the limestones of Carlsbad National Park which is in New Mexico, and glacial features of Voyageurs National Park which is in Minnesota. Metamorphic rocks are named for the process of change that affects rocks. The changes that make metamorphic rocks usually include rises in the temperature (generally to 392°F) and the pressure of a precursor rock, which can be igneous, sedimentary, or metamorphic, to a degree that the minerals in the rock are no longer stable. The rock might change in mineral content or appearance, or even both. Clues to identifying metamorphic rocks include the presence of minerals such as mica, amphibole, staurolite, and garnet, and layers in which minerals are aligned as a result of pressure applied to the rock.

Common metamorphic rocks include slate, schist, and gneiss. Metamorphic rocks commonly are made in mountains such as the Appalachian Mountains, parts of California, and the ancient, eroded metamorphic rocks in the Llano Uplift of central Texas. Metamorphic rocks are classified depending on their constituent minerals and texture. Foliated metamorphic rocks are those that have a layered texture. In foliated metamorphic rocks, elongate or platy minerals such as mica and amphibole become aligned as a result of pressure on the rock. Foliation can range from alternating layers of light and dark minerals typical of gneiss to the seemingly perfect alignment of platy minerals in slate.

Some metamorphic rocks aren’t foliated and have a massive texture devoid of layers. Mineralogy of metamorphic rocks reflects the mineral content of the precursor rock and the pressure and temperature at which metamorphism occurs. As sediments undergo metamorphism, the layers of sediment can be folded or become more pronounced as pressure on the rock increases. Elongate or platy minerals in the rock tend to become aligned in the same direction.

For example, when shale metamorphoses to slate, it becomes easier to split the well-aligned layers of the slate into thin, flat sheets. This property of slate makes it an attractive roofing material. Marble-metamorphosed limestone typically does not have the pronounced layers of slate, but is used for flooring and sculptures.

Metamorphism of igneous rocks can cause the different minerals in the rocks to separate into layers. When granite metamorphoses into gneiss, layers of light-colored minerals and dark-colored minerals form. As with sedimentary rocks, elongate or platy minerals become well-aligned as pressure on the rock increases.

As sediments undergo metamorphism, the layers of sediment can be folded or become more pronounced as pressure on the rock increases. Elongate or platy minerals in the rock tend to become aligned in the same direction. For example, when shale metamorphoses to slate, it becomes easier to split the well-aligned layers of the slate into thin, flat sheets. This property of slate makes it an attractive roofing material.

Marble-metamorphosed limestone-typically does not have the pronounced layers of slate, but is used for flooring and sculptures. Metamorphism of igneous rocks can cause the different minerals in the rocks to separate into layers. When granite metamorphoses into gneiss, layers of light-colored minerals and dark-colored minerals are made. As with sedimentary rocks, elongate or platy minerals become well-aligned as pressure on the rock increases.

It is possible for metamorphic rocks to change into other metamorphic rocks. In some regions, especially areas where mountain building is taking place, it is not unusual for several episodes of change to affect rocks. It can be difficult to unravel the effects of each episode of metamorphism. The word igneous comes from the Latin word ignis which means of fire. Sedimentary rocks make layers at the bottoms of oceans and lakes.

Layers of sedimentary rocks are called strata.

I got this photo at http://www.hydroponicsnewyorkcity.com/wp-content/uploads/2014/02/river-rocks.jpgimage but originally Google Images.

What Websites I used:



Books I Recommend: Circle Of Secrets by Kimberly Griffiths Little

Hi there! Here is the 4th recommendation list.

1. Circle of Secrets by Kimberly Griffiths Little
2. Sugar and Ice by Kate Messner
3. Sincerely by Courtney Sheinmel
4. Emily Windsnap and the Castle in the Mist by Liz Kessler
5. Clarice Bean, Don’t Look Now by Lauren Child
6. Smile! by Geraldine McCaughrean
7. Keeping Cool by Elizabeth Doyle Care

(amazon affiliate links above)