Sparkle: A Sparkly Life as a Fairy Princess

Hello, everyone! If you have a holiday you’re celebrating, enjoy it! This story is a fantasy version of my life. Hope you enjoy my story!

Once upon a time, there lived two parents who wanted at least a daughter and a son. So one night on September 13 in the year 2000, a daughter was born at 9:00pm. Her name was Sparkle because her eyes sparkled like diamonds ever since she opened her eyes for the first time. When Sparkle was 4, her mother discovered that her daughter had a short arm deletion called 18p- and her mother decided to find out as much as possible about 18p-. When Sparkle was 5, her parents had a son on November 12 in the year 2005. His name was Ocean because he had ocean colored eyes ever since he had opened his eyes for the first time. When she was 9, she went to her first 18p- conference in Las Vegas. She made 2 friends named Rainbow and Shimmer and she had a lot of fun at her 1st conference! Ever since then, she liked the conferences. She had gotten books, clothes, homemade stuff, and other store-bought stuff for Christmases to come. When she was 15, she got almost everything she wanted especially the laptop and telescope. She even got what she wanted for her birthday. So far, they live happily ever after! 

Please note that I changed some of the details for safety reasons! Thank you for reading my story!

I got this at https://s-media-cache-ak0.pinimg.com/236x/73/f2/42/73f242994aa7b7d8eb50009e89b4add0.jpg but orginally I got it at Google Images.

 

 

Interesting Facts About Rocks

Hey there! I’m researching rocks because I’m curious about them. I also like rocks because they are so interesting. Enjoy!

Geologists define rocks as aggregate of minerals. Minerals are naturally occurring, not unhealthy substances with specific chemical compositions and structures. A rock can be filled of many crystals of one or more minerals, or combinations of many minerals. Several exceptions, such as coal and obsidian, are not composed of minerals but are thought to be rocks.

People often use rocks for include building materials, roofs, sculpture, jewelry, tombstones, chalk, coal for heat, and more. Oil and natural gas can also be found in rocks. Many metals like a fork are made from rocks known as ores. Even, prehistoric humans used rocks as early as 2,000,000 B.C. Flint and other hard rocks were very important raw materials for crafting arrowheads and other special natural made rocks.

Around 500,000 B.C., rock caves and structures made from stones had become important forms of shelter for early man. During that time, early men had learned to use fire, a development that allowed humans to cook food as needed to survive and greatly expand their geographical range. Eventually, most likely no sooner than 5000 B.C., humans had realized that minerals such as gold and copper could be from rocks. Tons of ancient monuments were crafted from stone, including the pyramids of Egypt, built from limestone about 2500 B.C., and the buildings of Chichen Itza in Mexico, also of limestone, built near A.D. 450.

Since the 1500s, scientists have studied minerals and mining, fundamental aspects of the study of rocks. Georg Bauer published Concerning Metallic Things in 1556. By 1785, the British geologist James Hutton published Theory of the Earth, in which he explained his observations of rocks in Great Britain and his conclusion that Earth is much older than previous scientists before him had guessed. Geologists are scientists who study the earth and rocks, distinguish three main groups of rocks: igneous rocks, sedimentary rocks, and metamorphic rocks.

These distinctions are made on the basis of the types of minerals in the rock, the shapes of individual mineral grains, and the overall texture of the rock, all of which indicate the environment, pressure, and temperature in which the rock was made. Igneous rocks form when magma is below the land of the Earth or lava at the land of the Earth hardens. The minerals in the rock will make crystals or grow together so that the separate crystals make 1 crystal altogether. Igneous rocks and magma make up much of the oceanic and continental crust, as well as most of the rock deeper in the Earth.

Igneous rocks can be identified by the interlocking appearance of the crystals in them. Typical igneous rocks do not have a layered texture, but exceptions exist. For example, in large bodies of igneous rock, relatively thick crystals that are made early can sink to the bottom of the magma, and less thick layers of crystals that are made later can accumulate on top. Igneous rocks can form deep within the Earth or at the surface of the Earth in volcanoes.

In general, igneous rocks that form deep within the Earth have large crystals that indicate a longer period of time during which the magma cools. Igneous rocks that form at or near the surface of the Earth, such as volcanic igneous rocks, cool quickly and contain smaller crystals that are difficult to see without magnification. Obsidian, also called volcanic glass, cools down so fast that no crystals are made. Nevertheless, obsidian is considered to be an igneous rock.

Igneous rocks are classified on the basis of how much minerals there are and the size of the crystals in the rock. Extrusive igneous rocks have small crystals and crystallize at or near the Earth’s surface. Intrusive igneous rocks cool slowly below the Earth’s surface and have larger crystals. Rocks made up of thick, dark-colored minerals like olivine, pyroxene, amphibole, and plagioclase are called mafic igneous rocks.

Light-colored, less thick minerals, including quartz, mica, and feldspar are called felsic igneous rocks. Common igneous rocks include the felsic igneous rocks granite and rhyolite, and the mafic igneous rocks gabbro and basalt. Granite is an intrusive igneous rock that includes large crystals of the minerals quartz, feldspar, mica, and amphibole that form deep within the Earth. Rhyolite includes the same minerals, but forms as extrusive igneous rock near the surface of the Earth or in volcanoes and cools quickly from magma or lava, so its crystals are difficult to observe with the naked eye.

Similarly, gabbro is more coarse-grained than basalt and made deeper down in the Earth, but both rocks include the minerals pyroxene, feldspar, and olivine. Fabulous exposures of igneous rocks occur in the volcanoes of Hawaii, volcanic rocks of Yellowstone National Park are located in Wyoming, Idaho, Montana, in Lassen Volcanic National Park and Yosemite National Park in California. Sedimentary rocks are those made of grains of preexisting rocks or organic material that, in most cases, have been eroded, deposited, compacted, and cemented together. They typically form at the surface of the Earth as sediment moves as a result of the action of wind, water, ice, gravity, or a combination of these.

Sedimentary rocks also form as chemicals precipitate from seawater, or through accumulation of organic material such as plant debris or animal shells. Common sedimentary rocks include shale, sandstone, limestone, and conglomerate. Sedimentary rocks typically have a layered appearance because most sediments are deposited in horizontal layers and are buried beneath later deposits of sediments over long periods of time. Sediments deposited rapidly, however, tend to be poorly layered if layers are visible at all.

Sedimentary rocks are made in many different environments at the surface of the Earth. Eolian, or wind blown, sediments can accumulate in deserts. Rivers carry sediments and deposit them along their banks or into lakes or oceans. Glaciers make unusual deposits of a wide variety of sediments that they pick up as the glacier expands and moves; glacial deposits are well exposed in the northern United States. Sediments can travel in currents below sea level to the deepest parts of the ocean floor.

Secretion of calcium carbonate shells by reef-building organisms produce large quantities of limestone. Evaporation of seawater has resulted in the formation of widespread layers of salt and gypsum. Swamps rich in plants can produce coal if organic material accumulates and is buried before aerobic bacteria can destroy the dead plants. Sedimentary rocks are classified on the basis of the sizes of the particles in the rock and the composition of the rock.

Clastic sedimentary rocks comprise fragments of preexisting rocks and minerals. Chemical precipitates are sedimentary rocks that are made by precipitation of minerals from seawater, salt lakes, or mineral-rich springs. Organic sedimentary rocks formed from organic matter or organic activity, such as coal and limestone made by reef-building organisms like coral. Grain sizes in sedimentary rocks range from fine clay and silt to sand to boulders.

The sediment in a sedimentary rock reflects its environment of deposition. For example, wind-blown sand grains commonly is evidence of abrasion of their surfaces as a result of colliding with other grains. Sediments transported long distances tend to decrease in size and are more rounded than sediment deposited near their precursor rocks because of wearing against other sediments or rocks. Large or heavy sediments tend to wear out of water or wind if the energy of the water or wind is insufficient to carry the sediments.

Sediments deposited rapidly as a result of slides or slumps tend to include a larger range of sediment sizes, from large boulders to pebbles to sand grains and flakes of clay. Such rocks are called conglomerate. Along beaches, the rhythmic activity of waves moving sediment back and forth produces sandstones in which the grains are well rounded and of similar size. Glaciers pick up and carry a wide variety of sediments and often scratch or scrape the rocks over which they travel.

Sedimentary rocks are the only rocks in which fossils can be preserved because at the elevated temperatures and pressures in which igneous and metamorphic rocks form, fossils and organic remnants are ruined. The presence of fossils and the types of fossil organisms in a rock provide clues about the environment and age of sedimentary rocks. For example, fossils of human beings are not present in rocks older than approximately two million years because humans did not exist before then. Similarly, dinosaur fossils do not occur in rocks younger than about 65 million years because dinosaurs became extinct at that very time.

Fish fossils in sedimentary rock indicate that the sediments that make up the rock were deposited in a lake, river, or marine environment. By establishing the environment of the fossils in a rock, scientists learn more about the conditions under which the rock formed.

Spectacular exposures of sedimentary rocks include the Grand Canyon which is in Arizona, the eolian sandstones of Zion National Park which is in Utah, the limestones of Carlsbad National Park which is in New Mexico, and glacial features of Voyageurs National Park which is in Minnesota. Metamorphic rocks are named for the process of change that affects rocks. The changes that make metamorphic rocks usually include rises in the temperature (generally to 392°F) and the pressure of a precursor rock, which can be igneous, sedimentary, or metamorphic, to a degree that the minerals in the rock are no longer stable. The rock might change in mineral content or appearance, or even both. Clues to identifying metamorphic rocks include the presence of minerals such as mica, amphibole, staurolite, and garnet, and layers in which minerals are aligned as a result of pressure applied to the rock.

Common metamorphic rocks include slate, schist, and gneiss. Metamorphic rocks commonly are made in mountains such as the Appalachian Mountains, parts of California, and the ancient, eroded metamorphic rocks in the Llano Uplift of central Texas. Metamorphic rocks are classified depending on their constituent minerals and texture. Foliated metamorphic rocks are those that have a layered texture. In foliated metamorphic rocks, elongate or platy minerals such as mica and amphibole become aligned as a result of pressure on the rock. Foliation can range from alternating layers of light and dark minerals typical of gneiss to the seemingly perfect alignment of platy minerals in slate.

Some metamorphic rocks aren’t foliated and have a massive texture devoid of layers. Mineralogy of metamorphic rocks reflects the mineral content of the precursor rock and the pressure and temperature at which metamorphism occurs. As sediments undergo metamorphism, the layers of sediment can be folded or become more pronounced as pressure on the rock increases. Elongate or platy minerals in the rock tend to become aligned in the same direction.

For example, when shale metamorphoses to slate, it becomes easier to split the well-aligned layers of the slate into thin, flat sheets. This property of slate makes it an attractive roofing material. Marble-metamorphosed limestone typically does not have the pronounced layers of slate, but is used for flooring and sculptures.

Metamorphism of igneous rocks can cause the different minerals in the rocks to separate into layers. When granite metamorphoses into gneiss, layers of light-colored minerals and dark-colored minerals form. As with sedimentary rocks, elongate or platy minerals become well-aligned as pressure on the rock increases.

As sediments undergo metamorphism, the layers of sediment can be folded or become more pronounced as pressure on the rock increases. Elongate or platy minerals in the rock tend to become aligned in the same direction. For example, when shale metamorphoses to slate, it becomes easier to split the well-aligned layers of the slate into thin, flat sheets. This property of slate makes it an attractive roofing material.

Marble-metamorphosed limestone-typically does not have the pronounced layers of slate, but is used for flooring and sculptures. Metamorphism of igneous rocks can cause the different minerals in the rocks to separate into layers. When granite metamorphoses into gneiss, layers of light-colored minerals and dark-colored minerals are made. As with sedimentary rocks, elongate or platy minerals become well-aligned as pressure on the rock increases.

It is possible for metamorphic rocks to change into other metamorphic rocks. In some regions, especially areas where mountain building is taking place, it is not unusual for several episodes of change to affect rocks. It can be difficult to unravel the effects of each episode of metamorphism. The word igneous comes from the Latin word ignis which means of fire. Sedimentary rocks make layers at the bottoms of oceans and lakes.

Layers of sedimentary rocks are called strata.

I got this photo at http://www.hydroponicsnewyorkcity.com/wp-content/uploads/2014/02/river-rocks.jpgimage but originally Google Images.

What Websites I used:

http://science.jrank.org/pages/5919/Rocks.html

http://www.ducksters.com/science/rocks.php

American Tree Sparrows

Hi there! My mother, Camilla suggested that I write a series of posts about birds on my blog since I’ve been talking about them and learning about them. Please let me know if you have any bird books, CDs, or a website you’d recommend! Here is the part about American Tree Sparrows.

American Tree Sparrows are small, round-headed birds that often fluff out their feathers, making their plump bodies look even chubbier. Like other sparrows, they have fairly small bills and long, thin tails. Their color pattern is a rusty cap and rusty (not black) eyeline on a gray head, a streaked brown back, and a smooth gray to buff breast in both male and female American Tree Sparrows give an overall impression of reddish-brown and gray. A dark smudge in the center of the unstreaked breast is common.

Small flocks of American Tree Sparrows hop about on the ground, scrabbling for grass and weed seeds, calling back and forth with a soft, musical twitter that might make you twitter, sing, or dance. A single American Tree Sparrow may perch in the open top of goldenrod stalks or shrubs, or on low tree branches. Look for small flocks of American Tree Sparrows in the winter in weedy fields with hedgerows or shrubs, along forest edges, or near marshes except for Reno, NV. They readily visit backyards, especially if there’s a seed feeder.

American Tree Sparrows breed in the far north and are hardly seen south of northern Canada in the summer. 4-6, usually 5. Pale bluish or greenish, with brownish spotting often concentrated at larger end. Incubation is by female, 11-13 days; male visits nest often, but does not incubate. Young: Both parents feed nestlings. Young leave nest at age 8-10 days, when flight feathers not yet fully grown.

Parents may lure them away from nest by offering food. Young are able to fly at about 14-15 days after hatching; parents continue to feed them for about 2 more weeks. 1 brood per season, but may attempt to renest if 1st attempt fails. Diet in the winter is almost entirely seeds, from grasses, weeds, and other plants; also a few insects and berries.

In the summer, they eat mostly insects and other small invertebrates, plus a few seeds. Young are fed mostly insects. Pairs form shortly after birds arrive on breeding grounds. Male actively defends territory, chasing away other members of same species.

Nest site is on or near ground, in grass clumps beneath shrubs. Sometimes on hummock in open tundra; rarely up to 4′ above ground in willow or spruce. Nest is an open cup of twigs, grasses, moss, lined with fine grass and with feathers (usually ptarmigan feathers). Female builds nest in about 7 days.

All wintering areas are well to the south of breeding areas. Migrates relatively late in fall and early in spring. Apparently, migrates mainly at night. On average, females winter somewhat farther south than males.

The American Tree Sparrow is a small sparrow with a long notched tail. The adult has a streaked back and wings, with two white wing bars, but is otherwise unstreaked, while the juvenile is streaky overall. Adults have an unstreaked gray-brown breast and belly, with a dark spot in the center. The tail, rump, and nape of the neck are all solid gray.

The upper mandible of the bill is dark and the lower is yellow. The head is mostly gray, with a rufous crown and eye-line. American tree sparrows (Spizella arborea) breed throughout almost all of Alaska, the Yukon and Northwest territories, the very north of Manitoba and Ontario, all of Labrador, and in northern Quebec. Their winter range includes a very small part of southern Canada and all of the United States except for the western most 250 miles, the southern most 450 miles and all of Florida.

American tree sparrows usually breed near the tree line in open scrubby areas with willows, birches, alder thickets or stunted spruce. They may also breed in open tundra with scattered shrubs, often near lakes or bogs. They spend the winter in open forests, gardens, fields, and marshes. Baumgartner followed birds for the first 22 days of development.

Order of hatching was not dependent on the order of laying. Earlier hatched birds took the lead in development. During the nine and one-half days in the nest, the four feather tracts of the birds (dorsal, ventral, alar, caudal) go from completely bare to the back covered, lower belly slightly bare, wings 2/3 grown, and tail still a stub, and the birds grow from 1.62 gm to 16.7 gm, while their length goes from 33 mm to 75 mm during the same period. They lose 1.5 gm the first day out of the egg but have gained 3 gm by day 21 (Baumgartner, 1968).

On the second day after hatching the young were able to stretch for food. On the fourth day their eyes were half open, after the fifth day, wide open. The first sounds were made on the fifth day but were very soft. Fear was acquired between 7.5 and 8 days as demonstrated by their raucous calls when touched by humans.

During the first 12 days of the fledgling period (which lasts until about a month after leaving the nest in (Spizella arborea) the birds showed a steady increase in both tail length (14-47mm) and wing length (46-68mm). At the end of the first 21 days the wings were still slightly shorter and the tails about 2/3 the length of mature birds. A tree sparrow was observed to fly 30 or 40 ft fifteen days after hatching, and a little before one month after hatching, the birds could fly all around their territory. American tree sparrows are monogamous (one male mates with one female).

Males and females form breeding pairs after they arrive at the breeding sites in the spring. Both males and female sing to attract a mate. Females become excited when males come to sing nearby. They call back to the male, making a “wehy” sound.

Males may show off for females by spreading their wings and fluttering them or darting to the ground in front of the female, then flying back up to a perch. American tree sparrows breed between May and September. They raise one brood of chicks each year. The females builds the nest alone.

The nests are built on the ground out of moss, grasses, bark and twigs. They are lined with fine grass and feathers.The female then lays about 5 eggs. She lays one egg each day.

She incubates the eggs for 10 to 14 days and broods the chicks after they hatch. The chicks are altricial (helpless) when they hatch, so they rely on the female to protect them and keep them warm. Both parents feed the chicks until 2 to 3 weeks after the chicks leave the nest (called fledging). The young fledge from the nest about 9 days after hatching.

In late summer, the families join larger flocks. We do not know when young American tree sparrows begin breeding.
American tree sparrows breed once per year. Females incubate the eggs and brood the chicks after they hatch.

Both parents feed the chicks until they are about 22 days old. The oldest known American tree sparrow lived at least 10 years and 9 months. Most American tree sparrows probably live about 2.3 to 3.4 years. American tree sparrows are migratory.

Though they are usually active during the day (called diurnal), they migrate at night. American tree sparrows are territorial during the breeding season. Males sing to claim territories and they defend their territories from others. Females occasionally chase intruders too.

American tree sparrows do not defend winter territories. During the winter, they form large flocks that forage together. Within these flocks, some birds are dominant over other birds. American tree sparrows move by hopping on the ground and on branches, and by flying.

They do not swim or dive, but they do bath frequently. They roost alone trees or shrubs, haystacks, cornfields, and marshes. In the winter, they might take shelter together under the snow. American tree sparrows are omnivorous; they eat many different seeds, berries and insects.

During the winter, American tree sparrows mainly eat grass and weed seeds. During the summer, they mostly eat insects and spiders. American tree sparrows search for food among plants on the ground and the branches and twigs of shrubs and trees. In Massachusetts, they are often seen in flocks, feeding at bird feeders.

American tree sparrows need to drink a lot of water each day. During the winter, they eat snow in order to get enough water. Known predators of American tree sparrows include northern goshawks, sharp-shinned hawks, screech owls, pygmy owls, Cooper’s hawks, American kestrels, weasels, foxes, and red squirrels. When approached by humans, American tree sparrows give a rapid series of “tset” calls.

It is unknown how American tree sparrows respond to other potential predators. American tree sparrows are very important members of the food chain. They eat many weed seeds and insects and spiders, and they are an important food source for their predators.

20150513-112331.jpg

Sources I Used:

http://www.allaboutbirds.org/guide/Mountain_Bluebird/id

http://www.audubon.org/field-guide/bird/mountain-bluebird

http://www.nhptv.org/natureworks/mountainbluebird.htm

http://www.statesymbolsusa.org/symbol-official-item/idaho/state-bird/mountain-bluebird

http://identify.whatbird.com/obj/581/overview/Mountain_Bluebird.aspx

http://www.mbr-pwrc.usgs.gov/infocenter/i7680id.html

http://www.allaboutbirds.org/guide/california_quail/id

http://www.nhptv.org/natureworks/californiaquail.htm

http://www.audubon.org/field-guide/bird/california-quail

http://dwrcdc.nr.utah.gov/rsgis2/search/Display.asp?FlNm=callcali

http://www.allaboutbirds.org/guide/American_Tree_Sparrow/id

http://www.audubon.org/field-guide/bird/american-tree-sparrow

http://birdweb.org/birdweb/bird/american_tree_sparrow

http://www.biokids.umich.edu/critters/Spizella_arborea/

http://www.allaboutbirds.org/guide/Song_Sparrow/id

http://www.audubon.org/field-guide/bird/song-sparrow

Subscribe to Lillian Darnell by Email

Latest News: California Quail

Hi there! My mother, Camilla, suggested that I write a series of posts about birds on my blog since I’ve been talking about them and learning about them. Please let me know if you have any bird books, CDs, or a website you’d recommend! Here is the part about California Quail.

California Quail are plump, short-necked game birds with a small head and bill. They fly on short, very broad wings. The tail is fairly long and square. Both sexes have a comma-shaped topknot of feathers projecting forward from the forehead, longer in males than females. Adult males are rich gray and brown, with a black face outlined with bold white stripes. Females are a plainer brown and lack the facial markings. Both genders have a pattern of white, creamy, and chestnut scales on the belly. Young birds look like females but have a shorter topknot.

California Quail spend most of their time on the ground, walking and scratching in search of food. In morning and evening they forage beneath shrubs or on open ground near cover. They usually travel in groups called coveys. Their flight is explosive but lasts just long enough to reach cover.

You’ll find California Quail in chaparral, sagebrush, oak woodlands, and foothill forests of California and the Northwest. They’re quite tolerant of people and can be common in city parks, suburban gardens, and agricultural areas. The California quail is a small, plump bird with a short black beak. The male has a gray chest and brown back and wings. It has a black throat with white stripes and a brown cap on its head. The female has a gray or brown head and back and a lighter speckled chest and belly. Both the male and the female have a curved black crown feather on their foreheads. The male’s crown feather is larger than the female’s.

The California quail is sometimes called the valley quail. The California quail eats seeds, plant parts like buds and sometimes insects. They feed in flocks in the early morning. The California quail can be found from southern Oregon to southern California and east into Nevada. The California quail lives in grasslands, foothills, woodlands, canyons and at the edge of deserts. It likes areas with lots of brush. The California quail lives in coveys of 10 to 200 birds in the winter.

They will stay in these flocks until they pair off during mating season. Male California quails will perch on a tree or post and call out to claim their territory. The California quail will roost in trees to avoid danger and to rest. Males often compete for a mate. They will mate with only one female. Females usually lay between 12-16 cream and brown speckled eggs. Their nest is a shallow hollow or scrape in the ground that is lined with grass. The female incubates the eggs for about three weeks. Both parents will care for the chicks. The chicks leave the nest shortly after birth. They make their first attempts at flight when they are about 10 days old. They will stay on the ground for about a month and then will roost in trees with the rest of the flock.

The female usually has one brood a year. This sharply-marked bird with the curving topknot is common along the California coast and in a few other areas of the west. It has adapted rather well to the increasing human population, and is often found around well-wooded suburbs and even large city parks. California Quail live in coveys at most seasons, and are often seen strutting across clearings, nodding their heads at each step. If disturbed, they may burst into fast low flight on whirring wings.

The California Quail is a gray, ground-dwelling bird, more slender than most other quail. It has a light breast with scaled patterning, white streaks along brown sides, and black and gray scaling on the nape of the neck. The female has a tan head with a small feather plume. The male has a bold black face outlined in white, with a brown crown and a pendulous feather plume hanging forward from his forehead.

The California quail, California’s state bird, is a 9-11 inch hen-like bird with a distinctive teardrop-shaped head plume called a top-knot. Their plump bodies vary from grayish to brown with scaly markings on the lower breast and abdomen. Males are particularly elegant with a black throat, chestnut patch on the belly, a bluish gray breast, white speckles on its flanks, and a white stripe on the forehead and around the neckline. Females have a smaller top-knot and lack the male’s distinctive facial markings and black throat.
Her crest is dark brown and her body is brown or gray with white speckles on the chest and belly. The marked sexual dimorphism is believed to play an important part in breeding displays. Juveniles resemble the female, but have shorter and lighter colored crests. As ground dwelling birds, their short and powerful legs are well adapted for terrestrial locomotion. They can fly rapidly, but only for short distances. When alarmed they prefer to run, flying only as a last resort.

California quail are best adapted to semiarid environments, ranging from sea level to 4000 feet and occasionally up to 8500 feet or higher (Sumner 1935). As long as there is abundant food, ground cover, and a dependable water source, quail are able to live in a variety of habitats including open woodlands, brushy foothills, desert washes, forest edge, chaparral, stream valleys, agricultural lands, and suburb areas. Cover is needed for roosting, resting, nesting, escaping from predators, and for protection from the weather (Sumner 1935, Leopold 1977).

Leopold (1977) separates California quail habitat areas into four major ecological zones arid ranges mostly in Southern California and Baja California, transitional ranges in the Sacramento Valley, humid forest ranges associated with the Coast and Cascade ranges, and interior Great Basin and Columbia Basin ranges. Of these the transitional ranges in the Sacramento Valley foothills provide the most stable quail habitat, characterized by mild winters, moderate rainfall, moderately dense ground vegetation, and generally adequate ground cover.

California quail are generalists and opportunists, so food intake varies by location and season. Their main food items are seeds produced by various species of broad-leafed annual plants, especially legumes. This includes plants such as lupine (Lupinus sp.), clover (Trifolium sp.), bur clover (Medicago sp.), and deer vetches (Lotus sp.) (Leopold 1977). Their bills are typical for seedeaters: serrated, short, stout, and slightly decurved.

Shields and Duncan (1966) studied California quail diet in the fall and winter during a dry year on the San Joaquin Experimental Range in the central Sierra Nevada foothills. They found that seeds comprised 82% of their diet, while green leafage contributed 18%. Duncan (1968) also studied quail diet in the same area and found that legume seeds were their most important food item. Quail also eat leafy materials, acorns, fruits and berries, crop residues, and some insects (Leopold 1977).

During the fall and winter, California quail are highly gregarious birds, gathering into groups, called coveys. In most situations, covey size averages about 50 birds, but under intensive management and protection, coveys can get as large as 1000 birds (Leopold 1977). In the covey, the quail tend to imitate one another and exhibit cooperative behavior. For example, when one bird finds a good supply of food it often calls the others to it. Likewise, when a member of the covey perceives danger it will warn the group with the appropriate call (Sumner 1935).

California quail communicate with 14 different calls (Leopold, 1977). This includes courtship, re-grouping, feeding, and warning calls. The most frequently heard location call has been described as “cu-ca-cow” or “chi-ca-go.” At the start of nesting season in early spring the coveys break up, as quail pairs spread themselves out into different habitat areas to nest and rear their young.

At the end of summer each new quail family rejoins the others to form a new covey where they will remain until the next breeding season. Emlen (1939) observed this seasonal movement in his study of California quail on a 760-acre farm in the vicinity of Davis, California. In the winter, four coveys, containing 21-46 birds, had home ranges of 17-45 acres, roughly one acre for each bird. The covey locations and range size depended on the amount of brush cover available. The four territories were separated by 350 yards to half a mile and contact between the coveys was infrequent.

The members of a covey tended to feed and roost together in mid-winter, but occasionally they broke up into smaller units. Winter movements were restricted with only 5 to 10 acres of an entire territory utilized by the covey on any one day. The same area would serve as a feeding ground for a few days to two or three weeks when the birds would move to another part of their territory. The California quail is common to states of the Pacific coast. They were first introduced into Utah in 1869.

20150513-111209.jpg

Sources I Used:

http://www.allaboutbirds.org/guide/Mountain_Bluebird/id

http://www.audubon.org/field-guide/bird/mountain-bluebird

http://www.nhptv.org/natureworks/mountainbluebird.htm

http://www.statesymbolsusa.org/symbol-official-item/idaho/state-bird/mountain-bluebird

http://identify.whatbird.com/obj/581/overview/Mountain_Bluebird.aspx

http://www.mbr-pwrc.usgs.gov/infocenter/i7680id.html

http://www.allaboutbirds.org/guide/california_quail/id

http://www.nhptv.org/natureworks/californiaquail.htm

http://www.audubon.org/field-guide/bird/california-quail

http://dwrcdc.nr.utah.gov/rsgis2/search/Display.asp?FlNm=callcali

http://www.allaboutbirds.org/guide/American_Tree_Sparrow/id

http://www.audubon.org/field-guide/bird/american-tree-sparrow

http://birdweb.org/birdweb/bird/american_tree_sparrow

http://www.biokids.umich.edu/critters/Spizella_arborea/

http://www.allaboutbirds.org/guide/Song_Sparrow/id

http://www.audubon.org/field-guide/bird/song-sparrow

Subscribe to Lillian Darnell by Email

Mountain Blue Birds

Hi there! My mother, Camilla suggested that I write a series of posts about birds on my blog since I’ve been talking about them and learning about them. Please let me know if you have any bird books, CDs, or a website you’d recommend! Here is the part about Mountain Blue Birds.

Mountain Bluebirds are moderately small thrushes with round heads and straight, thin bills. Compared with other bluebirds they are slender and long-winged, with a long tail. Male Mountain Bluebirds are sky-blue, a little bit darker on the wings and the tail and a little bit paler on the belly, with white up under the tail. Females are pretty much gray-brown with tints of pale blue in the wings and the tail.

They occasionally show orange-brown throughout the chest. Mountain Bluebirds’ bills are completely black. Younger Mountain Bluebirds have fewer spots than the other young of little bluebirds. Unlike other bluebird species, Mountain Bluebirds often hover while foraging; they also pounce on their insect prey from an higher perch.

In the winter, the species often occur in large flocks wandering the landscape eating on berries, particularly some of those junipers. Mountain Bluebirds are mostly common in the West’s wide-open spaces, particularly at middle and higher elevations like mountains. They breed in native habitats such as prairie, sagebrush steppe, and even alpine tundra; anywhere with open country with at least a few trees that can provide nest cavities. They also readily take to human-altered habitats, often nesting in bluebird boxes and foraging in pastures.

The powder-blue male Mountain Bluebird is among the most beautiful birds of the West. Living in more open terrain than the other two bluebirds, this species may nest in holes in cliffs or dirt banks when tree hollows are not available. It often seeks its food by hovering low over the grass in open fields. They lay 5 to 6 eggs, sometimes 4 to 8 eggs.

Pale blue, unmarked (occasionally white) are their colors. Incubation is by female for about 13 to 17 days. Young birds: Both parents feed nestlings. Young birds leave the nest about 17 to 23 days after hatching, and are protected by their parents for another 3 to 4 weeks.

They have 2 breeds each year. Mountain Bluebirds feed heavily on insects, including beetles, grasshoppers, caterpillars, crickets, ants, bees, and others. They also eat some berries, including those of mistletoe, hackberry, and other plants. Berries are very important in their diet in the wintertime.

Sometimes interbreeds with the Eastern Bluebird where their ranges overlap. Nest: Apparently the female selects the site for the nest. The site is in a cavity, usually a natural hollow or old woodpecker hole in tree, or in a birdhouse. Sometimes nests in holes in dirt banks, crevices in cliffs or among rocks, holes in sides of buildings, old nests of other birds (such as Cliff Swallow or Dipper).

Nest in cavity (probably built by both genders) is a loose cup of weed stems, grass, twigs, rootlets, pine needles, and maybe even lined with animal hair or animal feathers. Mountain bluebirds migrate relatively late in the fall and early in the spring. Winter range varies from year to year, depending on the food supplies. Flocks sometimes wander east on the Great Plains, and lonely stray birds occasionally go as far as the Atlantic Coast.

The mountain bluebird is six to seven inches in length. The mountain bluebird breeds from east-central Alaska, southern Yukon and western Manitoba, south in the mountains to southern California, central and southeastern Nevada, northern and east-central Arizona, southern New Mexico and east to northeastern North Dakota, western South Dakota and central Oklahoma. In winters, the birds go from Oregon south to Baja California, Mexico and southern Texas, and east to eastern Kansas, western Oklahoma and central Texas. The males or females arrive at the breeding site first.

The mountain bluebird breeds in high mountain meadows with scattered trees and bushes and short grass. In winters, they live at lower elevations in plains and grasslands. The lovely mountain bluebird (Sialia arctcia) was made the official state bird of Idaho in 1931. The male mountain bluebird is a brilliant sky-blue, the female is gray with blue on her wings and tail.

The bluebird family is especially common in Idaho’s mountains. Idaho recognizes two bird symbols; the peregrine falcon is the official state raptor. The mountain bluebird is currently the state bird of Nevada. The Mountain Bluebird has a large range, estimated globally at 4,400,000 square kilometers.

Native to Canada, the United States, and Mexico, the mountain bluebirds prefer grassland, forest, and shrubland ecosystems. The global population of this bird is estimated at 5,200,000 individuals and does not show signs of decline that would necessitate inclusion on the IUCN Red List. For this reason, the current evaluation status of the Mountain Bluebird is Least Concern. The Mountain Bluebird is most likely to be confused with other bluebirds.

Male Mountain Bluebirds lack any reddish coloration on their underparts unlike Eastern and Western Bluebirds. Females are more difficult to separate. Eastern Bluebirds have a brownish throat and white belly while Mountain Bluebirds have gray throats and bellies. Western Bluebirds are browner on the breast than Mountain Bluebirds and have thicker bills.

Male Mountain Bluebirds might be confused with other all blue birds like Indigo Buntings and Blue Grosbeaks but these birds have much thicker, conical bills.

20150520-113133.jpg

Sources I Used:

http://www.allaboutbirds.org/guide/Mountain_Bluebird/id

http://www.audubon.org/field-guide/bird/mountain-bluebird

http://www.nhptv.org/natureworks/mountainbluebird.htm

http://www.statesymbolsusa.org/symbol-official-item/idaho/state-bird/mountain-bluebird

http://identify.whatbird.com/obj/581/overview/Mountain_Bluebird.aspx

http://www.mbr-pwrc.usgs.gov/infocenter/i7680id.html

http://www.allaboutbirds.org/guide/california_quail/id

http://www.nhptv.org/natureworks/californiaquail.htm

http://www.audubon.org/field-guide/bird/california-quail

http://dwrcdc.nr.utah.gov/rsgis2/search/Display.asp?FlNm=callcali

http://www.allaboutbirds.org/guide/American_Tree_Sparrow/id

http://www.audubon.org/field-guide/bird/american-tree-sparrow

http://birdweb.org/birdweb/bird/american_tree_sparrow

http://www.biokids.umich.edu/critters/Spizella_arborea/

http://www.allaboutbirds.org/guide/Song_Sparrow/id

http://www.audubon.org/field-guide/bird/song-sparrow